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Abstract: 

Energy levels, transition probabilities and oscillator strengths as well as effective 

collision strengths were calculated for 89 fine structure energy levels of Ar IX. The data refer to 

levels belonging to the configurations (1s2) 2s2 sp6, 2s2 2p5 3l, 2s2 2p5 4l, 2s1 2p6 3l, and 2s1 2p6 4l 

where l = s,p,d,and f. the atomic structure calculations were carried out by The full relativistic 

atomic structure program (FAC). The atomic structure data were used to simultaneously solving 

89 coupled rate equations for calculations of levels populations as well as gain coefficient of 

laser transitions between these levels at different plasma temperatures and different electron 

densities.   
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Introduction: 

X-ray lasers have multi applications in different scientific branches such as photoexcitaion, 

photoinoization in atomic physics science, electron spectroscopy for chemical Analysis, 

diagnostics of high-density fusion plasma, photolithography, grating and grid production as well 

as biological applications such as x-ray microscopy, x-ray diffractometry, and x-ray holography. 

X-ray lasers were demonstrated for the first time in 1984 in large laboratories from plasma 

generated by high power lasers [1,2]. 
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X-ray lasers requires highly power pump sources to cover the energy gab between lower and 

upper  laser levels in this very short wavelength region of electromagnetic spectrum (1-30 nm). 

In last two decades, many efforts were done to produce simple low cost table top x-ray lasers [3-

8]. The x-ray lasers are mainly produced from the plasma of highly ionized Neon or Nickel-like 

ions due the relative stability of this plasma in wide range of temperature and density [9-10].  

There are different pumping mechanism for x-ray lasers such as photo excitation, electron 

collisional excitation, charge transfer, de-electronic recombination and electron collisional 

recombination pumping [11], a capillary discharge is an example of electron collisional pumping 

method [3,12]. 

The electron collisional excitation pumping of the highly ionized atoms is the most favorable 

pumping technique [13-14]. Neon-like and Nickel-like x-ray lasers were extensively studied [15-

23]. In Neon-like ions, scientists studied mostly laser lines due the excitation outer shell 3p 

electron and the x-ray laser produced mainly from 2p53p→2p53s transitions. In 1994, the first 

Table-top 46.9 nm laser in Ne-like Argon was demonstrated by Rocca [3], however not much 

work were done to study the capability of producing X-ray laser radiation due to the excitation of 

the inner-shell 2s electron which gives the chance of obtaining shorter wavelength from the same 

ion without demanding of highly ionized ions[13-14, 24-27].  

In this paper, the atomic structure of Ne-like Ar ion were studied. Firstly, a 89 fine-structure 

energy levels arising from the configurations (1s2) 2s2 sp6, 2s22p5 3l,2s22p5 4l, 2s12p6 3l,and 

2s12p6 4l where l = s,p,d, and f were calculated using FAC code which is according to Dirac 

equation. Weighted Oscillator strengths, rates of spontaneous radiative decay and Collision 

strengths caused by electron impact excitation are also evaluated in the distorted wave 

approximation.  

Effective collision strengths then calculated by interposing the data resulted from the 

collision strengths and integrating over Maxwellian distribution at various temperatures. Finally, 

the laser gain from Ar IX is predicted after solving steady state rate equations for all 89 energy 

levels simultaneously by our Collisional radiative model. Our model treats the kinetic of the Ne-

like charge state in isolation from other ionization stages to calculate the population of each state 

at different plasma temperature and electron density. 
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Theory of atomic structure and gain calculations 

Energy Levels 

The energy levels arising from the configurations (1s2) 2s2 sp6, 2s22p5 3l,2s22p5 4l, 2s12p6 

3l,and 2s12p6 4l where l = s,p,d, and f are calculated with the J–J atomic notation . The 

calculations have been obtained by FAC [28]. The bound states of the atomic system were 

calculated using the configuration mixing approximation. A modified self-consistent Dirac–

Fock–Slater iteration was used to derive the radial part of wavefunction for the construction of 

basis states.  

Oscillator Strengths and Allowed transition probabilities 

The equations describing the weighted oscillator strengths as well as spontaneous radiative 

decay rates are presented for transitions between the configurations (1s2) 2s2 sp6, 2s22p5 3l,2s22p5 

4l, 2s12p6 3l,and 2s12p6 4l where l = s,p,d,f . The weighted oscillator strengths gful [28] are given 

as: 

gful = L−1ω(αω)2L−2Sul ,                               (1)  

Where ω is the transition energy and Sul is the line strength given by:  

𝑆𝑢𝑙  = │ < 𝜓𝑢 || 𝑂𝐿||𝜓𝑙 >  │,                  (2)  

where, OL refers to the spherical multipole operator of rank L that represents the electrons’ 

interactions with the electromagnetic field, and ψl and ψu are the initial state and final state of the 

transition, respectively. The weighted radiative transition probability gAul can be related to the 

weighted oscillator strength as follows:  

gAul = 2α3ω2gful ,                                         (3)  

The radiative decay rates were calculated within the framework of the single multipole 

approximation with arbitrary ranks, (i.e) the interference between different multipoles isn’t 

considered. For these, the atomic structure program FAC was employed [28]. The redial part of 

single multipole operator calculated using fully relativistic expressions of Grant [29], which is 
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essentially for M1 transitions. However in most cases the nonrelativistic limits have good 

accuracy. For which, the spherical multipole operator is simply depend on the transitions energy. 

Computation of gain coefficient 

Firstly, XUV and soft X-ray laser emission possibility at various temperatures of plasma 

and plasma electron densities from plasma of Ar8+ ion via electron collisional pumping is 

investigated. The coupled rate equations [30-33] are solved to calculate the reduced 

population densities.  

 

 

 

 

 

𝑁𝑗 [∑ 𝐴𝑗𝑖

𝑖<𝑗

+ 𝑁𝑒 (∑ 𝐶𝑗𝑖
𝑑 + ∑ 𝐶𝑗𝑖

𝑒

𝑖>𝑗𝑖<𝑗

)] = 𝑁𝑒 (∑ 𝑁𝑖𝐶𝑖𝑗
𝑒 + ∑ 𝑁𝑖𝐶𝑖𝑗

𝑑

𝑖>𝑗𝑖<𝑗

) + ∑ 𝑁𝑖𝐴𝑖𝑗

𝑖>𝑗

(4) 

 

 

where Nj is the population of level j, Aji is the allowed transition probability from level j to level 

i, Cd
ji is the electron collisional de-excitation rate coefficient, and Ce

ji is the electron collisional 

excitation rate coefficient, while Cd
ji is related to Ce

ji by [34-35].  

𝐶𝑗𝑖
𝑑 = 𝐶𝑖𝑗

𝑒 [
𝑔𝑖

𝑔𝑗
]exp [

𝛥𝐸𝑗𝑖

𝐾𝑇e
]                                 (5)  

Where gj and gi refer to the statistical weights of upper and lower levels respectively. Based on 

the effective collision strengths γij, electron impact excitation rates can be given by:  

 Cij
e =

8.6287×10−6

giTe

1
2⁄

γijexp
Eij

KTe
                    (6) 

The effective collision strength is obtained as a function of electron temperature by integrating 

the collision strength Ω over a maxwellian distribution of electron velocities as[36] 

γlu(Te) = ∫ Ω(𝐸)𝑒𝑥𝑝
−𝐸𝑢

𝐾𝑇𝑒

∞

0
d(

Eu

KTe
)                    (7) 
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is the the electron energy after collision. The collision strength is a dimensionless  uhere E

quantity, and related to the collision cross section by 

                                               

 

𝛺𝑙𝑢(𝐸) = 𝐾𝑙
2𝑔𝑙𝜎𝑙𝑢(𝜋𝑎0

2)                   (8) 

where Kl is the incident electron energy, gl is the statistical weight of the initial level l, and σlu 

is the collision cross section in units of  
2

0a  

The density of actual population NJ of the jth level was obtained using the following identity [32],  

𝑁𝐽 = 𝑁𝑗 × 𝑁𝐼                        (9)  

Where NI is the amount of ions that can reach the ionization stage I. NI is calculated by:  

𝑁𝐼 = 𝑓𝐼
𝑁𝑒

𝑍𝑎𝑣𝑔
                        (10)                     , 

where  fI is the abundance of fractions of the Ne- like ionization stages , Ne is the electron 

density, and Zavg is the average degree of ionization. Since the fractional populations calculated 

from Eq. (4) are normalized such that,  

∑ (
NJ

NI
)89

J=1 = 1                       (11) ,  

where’s 89 is the number of the whole levels of the ion in consideration. Thereby, the reduced 

population of upper levels (Nu /gu) and lower levels (Nl /gl ) can be calculated. In the lasant ion 

plasma, the pumped quanta will be transmitted to other levels by collision after application of 

electron collisional pumping mechanism; If a population inversion has been confirmed to be a 

positive gain through F>0, this will cause the occurrence of population inversions among the 

lower and upper levels [37]. 

𝐹 =
𝑔𝑢

𝑁𝑢
[

𝑁𝑢

𝑔𝑢
−

𝑁𝑙

𝑔𝑙
]                             (12)  
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Where Nl/gl and Nu/gu are the reduced populations of the lower level and upper level 

respectively. 

The dominant broadening mechanism under the plasma conditions conductive to X-ray lasing is 

Doppler broadening. The condition we chose are Ti = 2/3 Te (where Ti and Te are the ion and 

electron temperature respectively). Finally, the gain coefficients (α) of the different transitions in 

the Ar8+ ion has to be considered;  

𝛼 =
𝜆𝑙𝑢

3

8𝜋
(

𝑀

2𝜋𝐾𝑇𝑖
)

1/2
𝐴𝑢𝑙𝑁𝑢𝐹           (13)  

where λlu refers to the transition wavelength measured in cm, M is the ion mass, K is Boltzmann 

constant, Ti is the ion temperature in Kelvin and u,l are the upper and lower transition levels 

respectively. The gain coefficient is expressed in terms of the upper state density (Nu), this 

quantityis dependent on how the upper state is populated, as well as on the density of the initial 

source state. The source state is often regarded as the ground state for the particular ion. 

 

Results and Discussion 

Atomic Structure 

The calculated values of the energy levels of a Ne-like Ar contributed in production of 

soft x-ray laser radiation were presented in Table 1. A comparison with the other experimental 

data is also presented [38].  

The calculated energy levels showed, in general, a fairly good accord with the other 

experimental data. This is an indication of the proper choice of the radial wavefunctions. The 

radiative transitions probabilities and weighted oscillator strengths values for possible laser 

transitions are presented in Table 2. 

 

Levels Population and Gain Coefficients 

 

The reduced population densities are evaluated for 89 fine structure levels arising from (1s2) 2s2 

sp6  and 88 fine-structure levels contained in the configurations 2s22p5 3l, 2s22p5 4l, 2s12p6 3l, 

and 2s12p6 4l where l = s,p,d,f  configurations that emit coherent radiation in the XUV and soft 

x-ray spectral regions. A MATLAB developed algorithm is used for solving the coupled rate 
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Eq.(4) simultaneously. The relation between the reduced populations results and the electron 

densities at three different plasma temperatures (105, 210, 315 eV) are drawn in Figs. ( 1 to 3 ) 

for Ar IX ion. The processes of electron collisions between all levels and the rate of spontaneous 

radiative decay were taken into account. The way of behaving of level populations shows in 

general that the reduced population density is proportional to the electron density at low electron 

densities, (i,e) excitation to an excited state is immediately followed by radiative decay. 

Moreover, excited levels’ collisional mixing can be disregarded, however at high electron 

densities (> 6×1019 ), the radiative decay to all the levels will be of no account compared to 

depopulations by collision and all the level populations become approximately constant 

independent of the electron density as shown in Figs. 1 to 3.  

 

Table 1. Calculated Energy levels and fine structure splitting (in eV) For Ar IX 

index Level Jπ Ecal. E[37] Deviation(%) 

3 2p3/2 3s1/2 1o 250.8 252.07 0.52 

5 2p1/2 3s1/2 1o 253.2 254.38 0.47 

6 2p3/2 3p3/2 1e 265.0 266.48 0.57 

9 2p3/2 3p1/2 1e 268.6 269.88 0.46 

11 2p1/2 3p1/2 1e 270.2 271.43 0.45 

14 2p1/2 3p3/2 1e 271.1 271.43 0.13 

28 2s1/2 3s1/2 1e 328.2 325.23 -0.89 

31 2p3/2 4s1/2 1o 333.8 335.28 0.44 

32 2p1/2 4s1/2 0o 335.6 ------ 

 37 2p3/2 4p3/2 1e 340.8 341.61 0.22 

39 2p3/2 4p3/2 0e 342.1 ------ 

 40 2p1/2 4p1/2 1e 342.5 342.32 -0.05 

43 2s1/2 3p1/2 0o 346.1 ------ 

 46 2p1/2 4p1/2 0e 346.8 ------ 

 47 2s1/2 3p3/2 1o 347.5 345.54 -0.58 

48 2p3/2 4d3/2 0o 348.5 349.89 0.40 

77 2s1/2 4s1/2 0e 412.5 ------ 

 78 2s1/2 4p1/2 0o 418.0 ------   
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Table 2: Wavelength, weighted oscillator strength and transition probabilities. 

i j Transition λ(nm) gf Aji(sec)-1 

6 32 (2p1/2 4s1/2 )0 → (2p3/2 3p3/2 )1 17.5 1.69E-02 3.65E+09 

9 32 (2p1/2 4s1/2 )0 → (2p3/2 3p1/2 )1 18.5 4.05E-02 7.89E+09 

11 32 (2p1/2 4s1/2 )0 → (2p1/2 3p1/2 )1 18.96 1.04E-01 1.94E+10 

14 32 (2p1/2 4s1/2 )0 → (2p1/2 3p3/2 )1 19.2 6.36E-02 1.15E+10 

3 39 (2p3/2 4p3/2 )0 → (2p3/2 3s1/2 )1 13.5 3.28E-02 1.19E+10 

6 43 (2s1/2 3p1/2 )0 → (2p3/2 3p3/2 )1 15.3 5.84E-02 1.67E+10 

9 43 (2s1/2 3p1/2 )0 → (2p3/2 3p1/2 )1 16.0 1.86E-01 4.85E+10 

14 43 (2s1/2 3p1/2 )0 → (2p1/2 3p3/2 )1 16.5 5.94E-02 1.45E+10 

5 46 (2p1/2 4p1/2 )0 → (2p1/2 3s1/2 )1 13.2 2.94E-02 1.12E+10 

6 48 (2p3/2 4d3/2 )0 → (2p3/2 3p3/2 )1 14.8 3.60E-02 1.09E+10 

28 78 (2s1/2 4p1/2 )0 → (2s1/2 4s1/2 )1 13.8 5.61E-02 1.96E+10 

31 77 (2s1/2 4s1/2 )0 → (2p3/2 4s1/2 )1 15.8 1.34E-01 3.58E+10 

37 78 (2s1/2 4p1/2 )0 → (2p3/2 4p3/2 )1 16.0 1.10E-01 2.86E+10 

40 78 (2s1/2 4p1/2 )0 → (2p1/2 4p1/2 )1 16.4 8.20E-02 2.03E+10 

47 77 (2s1/2 4s1/2 )0 → (2p3/2 3p3/2 )1 19.1 1.68E-01 3.07E+10 

 

The maximum values of population inversion are reached when the rate of the collisional 

deexcitation of electrons for the upper level is comparable to the rate of radiative decay for this 

level [32, 39]. 

Positive gain will be found in laser medium as a result of population inversion. The gain 

coefficients for the Doppler broadening of various transitions in the Ar IX ion were calculated 

using Eq. (11). The gain coefficients in cm-1 for those transitions are drawn in Figs. (4 to 6). 
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Fig. (1): Reduced population of Ar IX levels after electron collisional pumping as a function of 

the electron density at temperature 105 eV. 

 

Fig. (2): Reduced population of Ar IX levels after electron collisional pumping as a function of 

the electron density at temperature 210 eV. 
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Fig. (3): Reduced population of Ar IX levels after electron collisional pumping as a function of 

the electron density at temperature 315 eV. 

 

 

 

Fig. (4): Gain coefficient of possible laser transitions against electron density at temperature 105 

eV in Ar IX. 
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Fig. (5): Gain coefficient of possible laser transitions against electron density at temperature 210 

eV in Ar IX. 

 

Fig. (6): Gain coefficient of possible laser transitions against electron density at temperature 1.5 

eV in Ar IX. 
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wavelength 18.69 nm at three electron temperatures. The population inversion occurs as a result 

of strong monopole excitation from the 2p6   ground state to the 2p53p configuration meanwhile 

the radiative decay of the 2p53p level to the ground level is forbidden, the 3p54s level decays so 

fast to the ground level. Thus, using plasmas that were created by optical lasers as a lasting 

medium, these soft x-ray lasers wavelengths were produced. It has to be mentioned that, for 

experimental conditions (electron densities and electron temperatures) that are typical of high-

density plasma sources laboratories, it is possible to create such laser from produced plasmas, 

and a quasistationary population inversion between many levels in Ar IX ion could occurred. 

From our calculations, one can conclude that under appropriate conditions, large laser gain in the 

neon like Ar IX ion for these transitions in the regions of XUV and soft X-ray of the spectrum 

can be achieved. 

 

Conclusion 

The analysis presented in this study shows that the collisional pumping of electrons is 

appropriate for producing population inversion and for offering the potential for laser radiation in 

the spectral region between 1 and 30 nm from Ar IX ion as well. These short lasers wavelengths 

can be achieved under appropriate conditions of pumping power as well as electron density. For 

the ion under study (Ar IX ion), if the positive gain obtained previously for some transitions in 

together with the evaluated parameters could be achieved practically, a successful low-cost 

electron collisional pumping of soft X-ray and XUV lasers can be achieved for various 

applications. 
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